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Abstract:      

The chief objective of this study is to show the usefulness of Rough set theory in Matrix theory. The aim of this paper is to 
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1. INTRODUCTION 

 

The theory of Rough set proposed by Polish computer scientist 

Zdzisław I. Pawlak [1,2,3]. There are two generalized method 

for Pawlak rough set model, the constructive and the algebraic 

methods. Some information systems may have no core attributes, 

in order to solve the problem to measure the importance of the 

degree of attribute, which can significantly decrease the ratio 

that the important attribute is taken as redundant attribute to 

remove. The idea of attribute reduction can be generalized by 

introducing a concept of significance of attributes.  

 

1.1Algebraic Rough set method 

 

Definition 1.1.1 

A rough set is a formal approximation of a crisp set in terms of a 

pair of sets which the lower and upper approximation of the 

original set. Let U denote the set of objects called universe and 

let R be an equivalence relation on U. Then (𝑈, 𝑅) is called an 

approximation space. For 𝑢, 𝑣 ∈U & (𝑢, 𝑣) ∈ R, 𝑢 and 𝑣 belong 

to the same equivalence class it is denoted by 𝑈/𝑅 and we say 

that they are indistinguishable. The relation R is called an 

indiscernibility relation. Let [𝑥]R denote an equivalence class of 

R containing element 𝑥, then lower approximation𝑅(X) & upper 

approximation𝑅(X)  for a subset X ⊆ U are defined by  

 

𝑅(X) = {𝑥 ∈U/[𝑥]R⊂ X},  𝑅(X) =  { 𝑥 ∈ 𝑈/[𝑥]𝑅⋂𝑋 ≠ 𝜙} 

 

Thus if an object 𝑥 ∈ 𝑅(X) then “𝑥 surely belongs to X” 

 

If 𝑥 ∈ 𝑅(X) then “𝑥 possibly belong to X” 

 

𝑅(𝑋) =  (𝑅(𝑋), 𝑅(𝑋)) is called a rough set with respect to R. 

 

Definition 1.1.2. 

The membership value of X is 𝜇(X) =
 𝑅(X) 

 𝑅(X) 
 

The membership value of each element of X is 𝜇𝑋(𝑥) = 
 ([𝑥]R∩𝑋) 

 [𝑥]R  
 

 

Definition 1.1.3. 
 

The rough membership can be interpreted as a degree that x 

belongs to X in view of information about x expressed by R. The 

rough membership function can be used to define 

approximations and the boundary region 𝐵𝑁𝑅 𝑋  of a set:  

𝑅(X)={𝑥 ∈U:𝜇𝑋(𝑥)  = 1}  

𝑅(X)={𝑥 ∈U:𝜇𝑋(𝑥)  > 0} 

𝐵𝑁𝑅 𝑋 =  𝑥 ∈ U: 0 < 𝜇𝑋(𝑥)  < 1  
 

1.2 Constructive Rough set method 

Approximations are fundamental concepts of rough set theory. 

Rough set based data analysis starts from a data table called a 

decision table or an information system, columns of which are 

labeled by attributes, rows – by objects of interest and entries of 

the table are attribute values. Attributes of the decision table are 

divided into two disjoint groups called condition and decision 

attributes, respectively. Each row of a decision table induces 

decision rule, which specifies decision (action, results, outcome, 

etc.) if some conditions are satisfied. If a decision rule uniquely 

determines decision in terms of conditions the decision rule is 

certain. Otherwise the decision rule is uncertain. Lower 

approximation– the set of items, which can be certainly 

classified as items of X. Upper approximation– the set of items, 

which can be possibly classified as items of X. Boundary 

region– the set of items, which can be classified either as items 

of X or not Set X is crisp with respect to R, if the boundary 

region of X is empty. Set X is rough with respect to R, if the 

boundary region of X is nonempty 

Information System 1.2.1 

Consider  the  simple  information  system  (U,𝐴) where 

𝑈={𝑥1 , 𝑥2 , , , 𝑥10}  set of objects, 𝐴={Age, I.Q, Eagerness to 

Learn, Communication Skill}with four conditional attributes and 

decision attribute D={ Performance}  and a ∈A, the set of 

attributes a: U→Va. The identity of the students. 
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Table 1 

𝑼 Age I.Q 
Eagerness to 

Learn 
Communication Skill Performance 

𝑥1 16 90 Good Oral, Written Good 

𝑥2  14 60 Good Written Good 

𝑥3 15 90 Good Oral, Written Good 

𝑥4 14 80 Fair Written Good 

𝑥5 15 70 Fair Written Above average 

𝑥6 16 60 fair Oral Above average 

𝑥7 14 80 Bad Oral, Written Average 

𝑥8 15 95 Bad Oral Average 

𝑥9 16 90 Good Oral, Written Above average 

𝑥10  15 95 Bad Oral Average 

 

U  = {𝑥1 , 𝑥2, 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6, 𝑥8 , 𝑥9, 𝑥10} 

A  = {Age, I.Q, Eagerness to Learn, Communication Skill} 

V Age   = {14,15,16}={1,2,3} 

VI.Q  = {95, 90, 80, 70, 60}={1,2,3,4,5} 

VE.L = {Good, Fair, Bad} = {1, 2, 3} 

VC.S = {Oral Written, Written, Oral} ={1,2,3} 

V Performance= {Good, above average, Average} ={1,2,3} 

A table may be redundant in two ways. The first form of 

redundancy is easy to observe. Some objects may have same 

features in all the attributes. This is true the case of objects 𝑥1,𝑥9 

and 𝑥8,𝑥10  in Table3.1.Here for reducing data it is enough if we 

store only one of the two. This has to be done for all the pairs. 

Such pairs are termed as indiscernible objects. 

 

2. Significance of attributes using lower rough data 

transition probability matrix   
 

Significance of an attribute can be evaluated by measuring effect 

of removing the attribute from an information table on 

classification defined by the table. Let us first start our 

consideration with decision tables. 

 

Table.2. Value for reduced table1 

𝑼 
Age 

(𝒂𝟏) 
I.Q (𝒂𝟐) 

Eagerness to Learn  

( 𝒂𝟑) 

Communication Skill  

( 𝒂𝟒) 
Performance (d) 

𝑥1 3 2 1 1 1 

𝑥2 1 5 1 2 1 

𝑥3 2 2 1 1 1 

𝑥4 1 3 2 2 2 

𝑥5 2 4 2 2 2 

𝑥6 3 5 3 3 2 

𝑥7 1 3 3 1 3 

𝑥8 2 1 3 3 3 

 

Definition2.1: Relation between each object is defined by 

𝑑(𝑥𝑖 , 𝑥𝑗 ) =  𝑥𝑖𝑘 − 𝑥𝑗𝑘  𝑛
𝑘=1  where n is the number of attribute 

Each element of the skew symmetric matrix is defined by 

𝑥𝑖𝑗 =𝑑(𝑥𝑖 , 𝑥𝑗 ) where 𝑖, 𝑗=1,2,…m , where m is the number of 

object. 
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Table.3. Skew-Symmetric matrix for Table2. 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 

𝑥1 0 -2 1 -2 -4 -8 -3 -4 

𝑥2 2 0 3 0 -2 -7 -1 -2 

𝑥3 -1 -3 0 -3 -5 -9 -4 -5 

𝑥4 2 0 3 0 -2 -6 -1 -2 

𝑥5 4 2 5 2 0 -4 -1 0 

𝑥6 8 7 9 6 4 0 1 4 

𝑥7 5 3 6 3 1 -3 0 -1 

𝑥8 4 2 5 2 0 -4 1 0 

 

Definition2.2 

Relation between each attribute is defined by 

𝑑(𝑎𝑖 , 𝑎𝑗 ) =  𝑥𝑘𝑖 − 𝑥𝑘𝑗  
𝑚
𝑘=1  where m is the number of object. 

Each element of the symmetric matrix is defined by 

𝑎𝑖𝑗 =𝑑(𝑎𝑖 , 𝑎𝑗 ) where 𝑖, 𝑗=1, 2,…n , where n is the number of 

attribute 

 

Table.4. Symmetric matrix for Table2 

𝑑 𝑎1 𝑎2 𝑎3 𝑎4 

𝑎1 0 14 7 6 

𝑎2 14 0 13 14 

𝑎3 7 13 0 3 

𝑎4 6 14 3 0 

 

𝑅𝑎1
  = 𝑎𝑘1

4
𝑘=1 =27,𝑅𝑎2

  = 𝑎𝑘2
4
𝑘=1 =41, 

𝑅𝑎3
  = 𝑎𝑘3

4
𝑘=1 =23,  𝑅𝑎4

  = 𝑎𝑘4
4
𝑘=1 =23 

𝑅𝑎3
≤ 𝑅𝑎2

≤ 𝑅𝑎1
≤ 𝑅𝑎2

 

 

Definition2.3 : Let 𝑅𝑖𝑗 =
  𝑥𝑘𝑖−𝑥𝑘𝑗  

𝑚
𝑘=1

𝑅𝑎𝑖

    for all 𝑥𝑖𝑗 ∈ 𝑅(𝑋)   

where i, j=1, 2,…n,  n is the number of attribute,𝑅𝑎𝑖
=   𝑎𝑘𝑖

𝑛
𝑘=1 . 

The matrix 𝑅 = (𝑅𝑖𝑗 )is called a Lower rough data symmetric 

matrix if 𝑅(𝑋) is the lower approximation of the information 

system under the conditional and decision attributes. 

Definition2.4 :Let 𝑅𝑖𝑗 =
  𝑥𝑘𝑖−𝑥𝑘𝑗  

𝑚
𝑘=1

𝑅𝑎𝑖

 for all 𝑥𝑖𝑗 ∈ 𝑅(𝑋)   where 

i, j=1,2,…n,  n is the number of attribute, 𝑅𝑎𝑖
=   𝑎𝑘𝑖

𝑛
𝑘=1 .The 

matrix 𝑅=(𝑅𝑖𝑗 )is called an upper rough data symmetric matrix 

if 𝑅(𝑋) is the lower approximation of the information system 

under the conditional and decision attributes.  

 

Definition2.5: The matrix 𝑅=(𝑅𝑖𝑗 )is  called a Lower rough data 

symmetric transition probability matrix  satisfying the  

conditions 

(i)𝑅𝑖𝑗 ≥ 0 where   𝑅𝑖𝑗 =
  𝑥𝑘𝑖−𝑥𝑘𝑗  

𝑚
𝑘=1

𝑅𝑎𝑖

, m is the number of object. 

(ii) 𝑅𝑖𝑗 = 1for all  i.  

 

Definition2.6:The matrix 𝑅= (𝑅𝑖𝑗 )is  called an upper rough data 

symmetric transition probability matrix  satisfying the  

conditions 

(i)𝑅𝑖𝑗 ≥ 0 where   𝑅𝑖𝑗 =
  𝑥𝑘𝑖−𝑥𝑘𝑗  

𝑚
𝑘=1

𝑅𝑎𝑖

, m is the number 

of object. 

(ii) 𝑅𝑖𝑗 = 1for all  i.     

 

Definition2.7 

The matrix 𝑅= (𝑅𝑖𝑗 )is said to be a regular matrix if all the 

entries of (𝑅𝑖𝑗 )𝑚  are positive. 

The matrix 𝑅= (𝑅𝑖𝑗 )is said to be a regular matrix if all the 

entries of (𝑅𝑖𝑗 )𝑚  are positive. 

 

Definition2.8: If the lower rough t.p.m is regular, then every 

state value approaches a unique fixed value called the steady 

state solution. That is 𝑅(𝑟) → 𝜋as r → ∞ where 𝑅(𝑟) =

{𝑅1
 𝑟 , 𝑅2

 𝑟 , …𝑅𝑘
 𝑟 } and     𝜋 = (𝜋1, 𝜋2 , …𝜋𝑘) 

 

Definition2.9: If 𝑅is the regular lower rough t.p.m and 𝜋 =

(𝜋1, 𝜋2 , …𝜋𝑘), then 𝜋𝑅 = 𝜋and  𝜋1 + 𝜋2 + ⋯ +𝜋𝑘 = 1 

 

Example 2.10 
Lower Rough data symmetric transition probability matrix for 

Table 4 is 

 
We require the consistency of each attribute, so we can find the 

steady state solution of the given lower rough data t.p.m 

                            

(𝜋1, 𝜋2 , 𝜋3 , 𝜋4)

 
 
 
 
 
 0

14

27

7

27

6

27
14

41
7

23
6

23

0
13

23
14

23

13

41

0
3

23

14

41
3

23

0  
 
 
 
 
 

=(𝜋1 , 𝜋2, 𝜋3 , 𝜋4 )  

14

41
𝜋2+

7

23
𝜋3 +

6

23
𝜋4 = 𝜋1 

14

27
𝜋1+

13

23
𝜋3 +

6

23
𝜋4 = 𝜋2 

7

27
𝜋1+

13

41
𝜋2 +

3

23
𝜋4 = 𝜋3 

6

27
𝜋1+

14

41
𝜋2 +

3

23
𝜋3 = 𝜋4 

Solving the above equations and using 𝜋1 + 𝜋2 + 𝜋3+𝜋4 = 1, 

we get 𝜋1 , 𝜋2 , 𝜋3, 𝜋4    = (0.22,0.35,0.18,0.23) this is the 

consistency of each attribute. Thus the attribute 𝑎1 and 𝑎4 are 
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equal importance in decision making. And the attribute 𝑎2is the 

most important attribute in decision making. 
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